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Abstract

Two forms of the archaeal intron-encoded site-speci®c
endonuclease I-DmoI, namely I-DmoIc and I-DmoIl, have
been puri®ed and crystallized. Crystals of I-DmoIc are
rod-shaped and diffract to 3.0 AÊ resolution, but further
analysis was hampered by twinning. Crystals of I-DmoIl,
which is a six-amino-acid C-terminal truncation of I-DmoIc,
are plate shaped and belong to space group C2 with cell
parameters a = 93.72, b = 37.03, c = 55.56 AÊ , � = 113.4�, with
one molecule per asymmetric unit (Vm = 2.01 AÊ 3 Daÿ1). The
crystals diffract to at least 2.3 AÊ resolution. A complete native
data set has been measured and structure determination is
on-going.

1. Introduction

I-DmoI is a site-speci®c endonuclease encoded by an archaeal
intron present in the 23S rRNA gene of the hyperthermophile
Desulfurococcus mobilis (Kjems & Garrett, 1985; Dalgaard et
al., 1993). This enzyme is a member of a family of homing
endonucleases characterized by the presence of a conserved
repeated dodecapeptide motif named LAGLIDADG
(Dalgaard et al., 1997; Belfort & Roberts, 1997). I-DmoI has
been shown to be involved in promoting the mobility of the
intron that encodes it (Aagaard et al., 1995), in a similar
fashion to other members of this family encoded by group I
introns and inteins (Jacquier & Dujon, 1985; Gimble &
Thorner, 1992). I-DmoI recognizes and cleaves a 14±20 base-
pair DNA sequence present in an intron-minus allele, gener-
ating a four-base-pair 30-hydroxyl overhang (Dalgaard et al.,
1994; Aagaard et al., 1997). The break initiates a recombina-
tional event that utilizes the intron-containing allele as donor,
leading to the propagation of the intron to the new allele.

The archaeal intron that encodes I-DmoI is unusual in that it
cyclizes after splicing. Since the open reading frame encoding
I-DmoI does not contain a stop codon 30 to the start codon
within the intron sequence, several different forms of I-DmoI
can theoretically be expressed in vivo. These include transla-
tion products of the pre-rRNA, as well as of the linear and
circular introns. Two of the forms, I-DmoIl (linear intron-
encoded) and I-DmoIc (circular intron-encoded), which differ
in length by six amino acids, have been shown to possess the
same site-speci®c endonuclease activity (Dalgaard et al., 1993)
and were used in crystallization trials.

2. Experimental

2.1. Puri®cation

Both forms of I-DmoI were puri®ed to near homogeneity
after overexpression in Escherichia coli as previously
described (Dalgaard et al., 1994). Brie¯y, the puri®cation was
performed as follows. The enzyme was overexpressed using the
pT7 expression system (Studier & Moffatt, 1986) and cells
were disrupted by sonication. The enzyme was puri®ed by
ammonium sulfate fractionation, followed by chromatography
using heparin-af®nity and phenyl-Sepharose columns. After
puri®cation the enzyme was concentrated over a 1 ml heparin
column (Hitrap Heparin, Pharmacia). Pooled fractions from
the phenyl-Sepharose column were applied directly to the
heparin column and eluted with a step gradient from 0.5 to
1.5 M NaCl. The enzyme-containing fractions were dialysed
against 10 mM Tris±HCl pH 8.0, 1 mM DTT, 10% ethylene
glycol and 0.5 M NaCl. The ®nal concentrations were
approximately 10 mg mlÿ1. The purity and molecular weight
were veri®ed using electrospray mass spectrometry: 22609 Da
for I-DmoIc and 22003 Da for I-DmoIl. The secondary
structure composition of I-DmoIc was estimated from a
circular dichroism spectrum. The spectrum was obtained using
a J-720 Spectropolarimeter (JASCO) that had been calibrated
with aminocamphorsulfonate using a 0.5 mm path length. The
sample contained 0.5 mg mlÿ1 I-DmoIc in 20 mM Tris±HCl
and 100 mM NH4OAc. Using the method of Yang et al. (1986),
the composition was estimated to be 50.2% �-sheet, 28.1%
�-helix, 21.6% random coil and 0% �-turn.

2.2. Crystallization

Crystals were grown by hanging-drop vapor-diffusion
methods. An initial screening for crystallization conditions was
performed with the sparse-matrix sampling protocol (Jancarik
& Kim, 1991), using drops containing 2 ml protein solution and
2 ml precipitating solution equilibrated against 800 ml of
reservoir solution at 293 K. For I-DmoIc, small needles formed
after one day under several conditions of the Crystal Screen I
(Hampton Research) kit, all of which contained PEG as the
primary precipitating agent. After three to four weeks, several
high-salt solutions also yielded needle-shaped crystals. Opti-
mization experiments led to the following conditions for
crystallization: drops containing 3 ml protein at 10 mg mlÿ1 in
5 mM Tris±HCl pH 8.0, 150 mM NaCl, 10% ethylene glycol,
1 mM DTT and 3 ml precipitating buffer were equilibrated
against 1 ml of precipitating buffer containing 2±3% PEG
3350, 1±1.2 M sodium acetate, 10% ethylene glycol, 1%
2-methyl-2,4-pentanediol, 50 mM Na+, K+ phosphate pH 8.0
and 100 mM Tris±HCl pH 8.0. The largest crystals, up to 1.0 �
0.1 � 0.1 mm, were obtained by initiating crystallization
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experiments at 310 K and by stepwise lowering of the
temperature to 293 K over a period of four weeks. The crystals
are rod-shaped and diffract to at least 3.0 AÊ resolution, but
further analysis was hampered by twinning problems.

For I-DmoIl, initial crystallization trials with the Crystal
Screen kit yielded small crystals from 30% PEG 3350, 200 mM
Li2SO4 in 100 mM Tris±HCl pH 8.5 using protein at approxi-
mately 10 mg mlÿ1 in 5 mM Tris±HCl pH 8.0, 150 mM NaCl,
10% ethylene glycol and 1 mM DTT. Optimization experi-
ments resulted in reproducible large crystals from drops
containing 4 ml protein solution as described above, 4 ml
precipitating buffer and 1 ml of 20 mM n-octyl-�-gluco-
pyranoside equilibrated against 1 ml of a precipitating buffer
consisting of 30% PEG 3350, 200 mM sodium acetate in
100 mM Tris±HCl pH 8.5. Plate-shaped crystals, as shown in
Fig. 1, grow in 2±5 days to dimensions of 0.5 � 0.3 � 0.1 mm.

3. Results and discussion

X-ray diffraction data were measured on a Rigaku R-AXIS IIc
detector equipped with mirror optics and a liquid-nitrogen
low-temperature device. The crystal was ¯ash-cooled to
approximately 130 K. No additional cryoprotectant was
required. The I-DmoIl crystals belong to the monoclinic space
group C2 with cell parameters a = 93.72, b = 37.03, c = 55.56 AÊ ,
� = 113.4� and V = 176960 AÊ 3. With a molecular weight of
22003 Da and one molecule per asymmetric unit, Vm is
2.01 AÊ 3 Daÿ1, corresponding to a solvent content of 33.3%
(Matthews, 1968). A 2.33 AÊ native data set was measured using
a crystal with approximate dimensions 0.4� 0.3� 0.1 mm. The
data were processed and scaled with the BIOTEX package
(Molecular Structure Corporation). Details of the data-
reduction statistics are listed in Table 1.

The structures of two other LAGLIDADG proteins, the
homing endonuclease I-CreI (Heath et al., 1997) and the intein
PI-SceI (Duan et al., 1997), were recently published. I-CreI is
unusual in that it contains only one LAGLIDADG motif and
functions as a homodimer. The structure of I-CreI shows the
two monomers related by a crystallographic twofold rotation
axis. PI-SceI consists of a protein-splicing domain and an
endonuclease domain. The endonuclease domain contains two
LADLIDADG motifs and has a two-subdomain fold. The
overall topology of each subdomain resembles that of an
I-CreI monomer but the subdomains differ signi®cantly in the
dimensions and relative orientations of some of the secondary

elements, resulting in an asymmetric structure. I-DmoI differs
from both these enzymes since it contains two LAGLIDADG
motifs but no protein-splicing domain. A self-rotation search,
using the program AMoRe (Navaza, 1994), was performed for
I-DmoI. Since no twofold rotation peak other than the crys-
tallographic rotation axis could be detected, the overall
structure of I-DmoI is likely to be more similar to that of the
endonuclease domain of PI-SceI than to that of the I-CreI
dimer. Molecular-replacement calculations aimed at deter-
mining the structure of I-DmoI, using the structure of I-CreI as
a model, have not yielded any valid solutions. This may be
explained by the fact that the I-CreI dimer is much larger than
I-DmoI (276 compared with 187 residues) but is probably also
a consequence of the anticipated lower symmetry of the latter.
Therefore, the structure of I-DmoI will be determined by
multiple isomorphous replacement or multiple anomalous
diffraction (MAD) methods. Currently, at least two potential
heavy-atom derivatives have been identi®ed; however, phasing
attempts are hampered by non-isomorphism problems.
Therefore, MAD phasing is the most likely to be successful.
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Fig. 1. Plate-shaped crystals of I-DmoIl. The crystals shown have

approximate dimensions of 0.4 � 0.25 � 0.1 mm.

Table 1. Data reduction statistics for the 233 AÊ resolution data
set for I-DmoIl

All data,
20±2.33 AÊ

High-resolution shell,
2.5±2.33 AÊ

Total observations 30357 5409
Unique observations 7800 1464
Completeness (%) 95.2 93.3
Rmerge 0.061 0.188
hF2/�(F2)i 13.52 3.84
F2/�(F2) > 2 (%) 82.1 59.9
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